Conversion Factors and Unique Formulae Associated With the Transportation Professional Certification Board's Certification Examinations

Soft Conversion Factors

Metric	English	English	Metric
1 meter (m)	3.28 feet (ft)	1 foot (ft)	0.305 meters (m)
1 kilometer (km)	0.62 miles	1 mile (5,280 ft)	1.609 kilometers (km)
1 km/hour	0.62 mph	1 mph	1.609 km/hour
1 kilogram (kg)	2.20 pounds (lb)	1 pound (lb)	0.454 kilograms(kg)

Hard Conversion Factors

Lane Width		Shoulder	Shoulder Width/Clearance	
Metric (m)	English (ft)	Metric (m)	English (ft)	
3.6 meters (m)	12 feet (ft)	3.0 meters (m)	10 feet (ft)	
3.3 meters (m)	11 feet (ft)	2.4 meters (m)	8 feet (ft)	
3.0 meters (m)	10 feet (ft)	1.8 meters (m)	6 feet (ft)	
2.7 meters (m)	9 feet (ft)	1.2 meters (m)	4 feet (ft)	

English	Metric
$E_{\rm m} = \lambda^2 / \mu (\mu - \lambda)$	
Where:	
E _m = average queue length (veh)	
λ = arrival rate (v/min)	
μ = service rate (v/min)	
If S < L, then L = AS ² /2158	If S < L, then L = AS ² /658
If S > L, then L = 2S – (2158/A)	If S > L, then L = 2S – (658/A)
Where:	Where:
L = length of vertical curve (ft)	L = length of vertical curve (m)
A = algebraic difference in grades (%)	A = algebraic difference in grades (%)
$ G_1 - G_2 $ (absolute of $G_1 - G_2$ in %)	$ G_1 - G_2 $ (absolute of $G_1 - G_2$ in %)
S = sight distance (ft)	S = sight distance (m)
d = 1.47 Vt + 1.075 V ² /a	d = 0.278 Vt + 0.039 V ² /a
Where:	Where:
d = stopping distance (ft)	d = stopping distance (m)
V = initial speed (mph)	V = initial speed (km/h)
t = brake reaction time, 2.5 s (s)	t = brake reaction time, 2.5 s (s)
a = deceleration rate (ft/s ²)	a = deceleration rate (m/s ²)

English	Matria
English P = F $[1/(1 + i)^n]$	Metric
P = F[T/(T+1)]	
Where:	
P = present worth of a future amount	
F = future amount	
i = interest rate	
n = service life	
$P = A [(1 + i)^{n} - 1] / [i(1 + i)^{n}]$	
Where:	
P = present worth of a series of future	
amounts	
A = annual amount	
i = interest rate	
n = service life	
Incremental benefit/cost ratio of	
project <i>j</i> over project <i>k</i> =	
$\frac{(\text{Benefits}_{i} - \text{Benefits}_{k})}{(\text{Costs}_{i} - \text{Costs}_{k})}$	
(Costs _j – Costs _k)	
$CP = t + (v/(2a \pm 2Gg)) + (W + L)/v$	$CP = t + (v/(2a \pm 2Gg)) + (W + L)/v$
	Where:
	CP = change period (change + clearance
intervals) (s)	intervals) (s)
	t = driver perception/reaction time (s)
	v = approach velocity (m/s)
	a = deceleration rate (m/s^2)
- · · · · · · · · · · · · · · · · · · ·	$g = 9.8 \text{ m/s}^2$
	G = percent of grade/100
. ,	W = width of intersection (m) L = length of vehicle (m)
L = length of vehicle (ft) $PF = f_p(1 - P)/(1 - (g/C))$	L = length of vehicle (m)
Γι - ι _p (± - Γ)/(± - (β/C))	
Where:	
PF = progression factor	
f_p = supplemental adjustment factor	
P = proportion of vehicles arriving on	
green	
g = green time of phase(s)	
C = cycle length	

English	Metric
f = (V ² /15R) - e/100	f = (V ² /127R) – e/100
Where: f = side friction factor V = speed (mph) R = curve radius (ft) e = rate of superelevation (%)	Where: f = side friction factor V = speed (km/h) R = curve radius (m) e = rate of superelevation (%)
$d = 1.47V(J + t_a)$	d = 0.28V(J + t _a)
Where: d = sight distance required (ft) V = approaching train velocity (mph) J = driver perception/reaction time (s) t _a = time to accelerate and clear (s)	Where: d = sight distance required (m) V = approaching train velocity (km/h) J = driver perception/reaction time (s) t _a = time to accelerate and clear (s)
$C_{o} = (1.5L + 5)/(1 - Y_{1} - Y_{2} - Y_{3}Y_{n})$ Where: $C_{o} = optimum cycle length(s)$ $L = lost time/cycle(s)$ $Y_{n} = critical volume/saturation flow rate$ by phase	
K = L/A	K = L/A
Where: K = a factor L = length of curve (ft) A = algebraic difference in grades (%) $ G_1 - G_2 $ (absolute of $G_1 - G_2$ in %)	Where: K = a factor L = length of curve (m) A = algebraic difference in grades (%) G ₁ - G ₂ (absolute of G ₁ - G ₂ in %)
$U_{s} = dn/\Sigma t$ $U_{t} = \Sigma u/n$ $U_{t} = U_{s} + \sigma_{s}^{2}/U_{s}$	
Where: U_s = average space-mean speed U_t = average time-mean speed σ_s^2 = variance of space-mean speeds d = distance traversed n = number of travel times observed t_i = travel time for the <i>i</i> th vehicle u_i = speed of the <i>i</i> th vehicle	

English	Metric	
$\frac{\text{English}}{\text{R}_{\text{sec}} = \text{A} \times 10^8 / (365 \text{TVL})}$	$R_{sec} = A \times 10^8/(365TVL)$	
Nsec - A X 10 / (3031 VL)	$N_{sec} = A \times 10 / (3031 VL)$	
Where:	Where:	
R_{sec} = crash rate for the road section per	R_{sec} = crash rate for the road section per	
hundred million vehicle miles	hundred million vehicle kilometers	
A = number of reported crashes	A = number of reported crashes	
T = time period of the crashes (years)	T = time period of the crashes (years)	
V = annual average daily traffic volume	V = annual average daily traffic volume	
(vehicles per day)	(vehicles per day)	
L = length of the segment (miles)	L = length of the segment (kilometers)	
$R_{spot} = A \times 10^{6} / (365 \text{TV})$		
Aspot - A X 10 7 (303 1 V)		
Where:		
R_{spot} = crash rate for the spot per million		
vehicles		
A = number of reported crashes		
T = time period of the analysis (years)		
V = annual average daily traffic volume		
entering the spot (vehicles per day)		
$d = \frac{v_i^2 - v_f^2}{2a}$	$d = \frac{v_i^2 - v_f^2}{2a}$	
2a	2a	
Where:	Where:	
d = distance	d = distance	
v _i = initial velocity (fps)	v _i = initial velocity (mps)	
v_f = final velocity (fps)	$v_f = final velocity (mps)$	
a = acceleration rate (ft/sec ²)	a = acceleration rate (m/sec ²)	
$v_{f} - v_{i}$	$v_f - v_i$	
$t = \frac{v_f - v_i}{a}$	$t = \frac{v_f - v_i}{a}$	
u	u	
t = total time	t = total time	
$v_f = final speed (fps)$	$v_f = final speed (mps)$	
v_i = initial speed (fps)	v_i = initial speed (mps)	
a = acceleration (ft/sec^2)	a = acceleration (m/sec2)	
,		
Density (veh/mi) =	Density (veh/km) =flow rate (veh/h)	
average travel speed (mi/h)	average travel speed (km/h)	

Revised 12/2022